بهینه سازی مشخصات ابعادی در اتصال مواد مرکب چند لایه به کمک شبکه عصبی مصنوعی و الگوریتم ژنتیک
Authors
Abstract:
در این مقاله حالات و بارهای گسیختگی برای اتصالات چندپینی در ورق مواد مرکب الیاف شیشهای اپوکسی تک جهته، با استفاده از روش اجزای محدود و آزمونهای تجربی تحلیل میشوند. به علاوه با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک، الگویی معرفی میشود که در آن پینها در موقعیت بهینهشدهای قرار گیرند. در اتصالات چند پینی، تغییرات گام نسبت به قطر پین، عرض ورق نسبت به قطر پین و نسبت فاصله از لبه ورق به قطر پین بر نحوه گسیختگی اتصال تأثیر بسزایی دارند. با توجه به این که برای اینگونه ورقها حل دقیقی از گسیختگی وجود ندارد، برای بهینهسازی در هر مورد شبیهسازیهای متعدد اجزای محدود انجام و نتایج آن با استفاده از شبکه عصبی برازش میگردد. الگوی برازش شده این شبکه به عنوان ورودی الگوریتم ژنتیک استفاده میشود. با در نظر گرفتن قیود مسأله و مشخصههای ابعادی، الگویی بهینه با این شرط که گسیختگی در آنها نسبت به بقیه نمونهها دیرتر اتفاق بیفتد، ارائه میگردد. نتایج آزمایشگاهی و اجزای محدود باهم مقایسه گردیده و میزان تفاوت بین آنها تحلیل خواهد شد.
similar resources
برآورد مشخصات پرش هیدرولیکی متحرک با کاربرد شبکه عصبی مصنوعی و روش تلفیقی شبکه عصبی-الگوریتم ژنتیک
پرش هیدرولیکی متحرک، حالت خاصی از جریان غیرماندگار است که باعث تغییر رژیم و وقوع ناپیوستگی هیدرولیکی در جریان می شود . در روندیابی جریان غیرماندگار و یا برنامه های بهره برداری کانال های روباز، آگاهی از رفتار چنین جریانی در باز ه ها ضروری است . این درحالی است که شبیه سازی عددی این پدیده به واسطه وجود ناپیوستگی هیدرولیکی و غیرماندگاری جریان، پیچیده است و داده های آزمایشگاهی در این مورد نیز محدو...
full textبهینه سازی بازده نموداری توربین بخار به کمک الگوریتم ژنتیک
امروزه تولید برق مهمترین بخش تولید انرژی در صنایع را به خود اختصاص داده است که در این رهگذر، بهینهسازی مصرف انرژی و توان نیروگاهی میتواند در صرفهجویی انرژی مفید واقع شود. یکی از بخشهای مهم نیروگاهی، طراحی و ساخت توربینها، اعم از توربینهای هیدرولیکی، بخاری، بادی و هستهای میباشد. بدین منظور طراحی نیروگاهها بهعنوان مهمترین موضوع مد نظر قرار میگیرد. در این مقاله، با توجه به روابط مهندس...
full textمدل سازی و بهینه سازی واحد تولید هیدروژن با شبکه ی عصبی مصنوعی و الگوریتم ژنتیک
هدف اصلی این پژوهش، مدل سازی واحد صنعتی تولید هیدروژن براساس تبدیل متان با بخار آب با کاربرد شبکه ی عصبی مصنوعی است. عامل های دبی فراورده و انرژی مصرفی به عنوان عامل های خروجی مدل در نظر گرفته شد و دو شبکه ی عصبی مجزا برای پیش بینی این دو عامل مدنظر قرارگرفت. نتیجه های مدل سازی با دقت بسیار خوب، خطای متوسط مطلق، خطای متوسط نسبی و خطای احتمالی بین داده های واقعی کارخانه و مدل را به ترتیب برابر ب...
full textمدلکردن و بهینه سازی سنتز آنزیمی کافئیک اسید فن اتیل استر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
در این تحقیق، واکنش کافئیک اسید و 2- فنیل اتانول در حضور لیپاز تثبیت شده از مخمر آنتارکتیکا (نووزیم 435) به منظور تولید کافئیک اسید فن اتیل استر در سیستم ایزواکتان با استفاده از روشهای شبکه عصبی مصنوعی و ژنتیک الگوریتم مدل سازی و بهینه گردید. بدین منظور ازیک طرح مرکب مرکزی چرخش پذیر با 4 متغیر و 5 سطح جهت مدل کردن واکنش آنزیمی به کمک شبکه عصبی مصنوعی استفاده شد. متغیرهای مستقل شامل دما، زمان، ...
full textتحلیل پارامتری و بهینه سازی سیکل تبرید اجکتوری فوق بحرانی همراه با سیال عاملهای مختلف به کمک شبکه عصبی مصنوعی و الگوریتم بهینه سازی پرندگان
در این مقاله، به بررسی پارامتری و بهینه سازی سیکل تبرید اجکتوری همراه با سیال عامل های مختلف پرداخته شده است که قابلیت استفاده در بخشی از فرایند استفاده از انرژی خورشیدی را دارا میباشد. مزیت اصلی استفاده از اجکتور در سیکل های تبرید که معمولاً به جای کمپرسور بکار می رود، سادگی در ساخت و نگه داری، اطمینان پذیری بالا و هزینه ی کم می باشد. در این مطالعه، سیکل تبرید اجکتوری فوق بحرانی با استفاده از ...
full textMy Resources
Journal title
volume 47 issue 1
pages 373- 377
publication date 2017-04-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023